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Abstract- The frequent mining is not a new area to explore and lot of research works are carried out by many 

authors but still the FIM is subject to some improvement when dealt with very large datasets. This paper deals 

with very large dataset and utilizes divide and conquer approach (i.e.) partition the dataset into many parts and 

process the mining task to reduce the burden related to time complexity and memory consumption. The 

proposed approach uses bit vector representation and the local support is initially calculated for the partitioned 

datasets using parallel computation on several processors and then the k- found is merged together to find the 

global support. Now the merged data is again partitioned to find the k+1 local support using parallel processing 

and the merged back to find the global support. This divide and merge process is continued until the size of the 

merged data becomes smaller for computation. Here the unpromising items are pruned and the final resultant is 

portrayed and the time and memory footprints are calculated for the datasets. From the experimental result it is 

quite clear that the parallelism inducted in this paper reduces the time and increases the speed considerably 

when executed on very large datasets. 

Index Terms: Big Data, Frequent Mining, Item sets, Divide and Conquer 

1. INTRODUCTION 

The foremost objective of the data mining 

is to unearth inherent, hidden, and useful 

information from the large raw data [1]. Frequent  

mining is one of the most regularly used data 

mining process which discovers frequently co-

occurring items, incidents, or objects (e.g., 

frequently bought items in shops). One of the most 

famous frequent pattern mining algorithms is the 

Apriori algorithm [6] proposed by Aggarwal and 

Srikant which employs a generate-and-test 

approach in discovering frequent patterns level-

wise and bottom-up technique. In other words, the 

algorithm first generates candidate patterns of 

cardinality k (i.e., candidate k-s) and tests if each of 

them is frequent (i.e., tests if its support or 

frequency meets or exceeds the user-specified 

minimum support threshold). Then the algorithm 

generates k+1 item set which satisfies the minimum 

support and continues to generate until all the 

frequent item sets are found. 

The FP-Growth algorithm [2] is another 

well-known frequent pattern mining algorithm. It 

utilizes an expanded prefix-tree structure called a 

Frequent Pattern Tree (FP-tree) to catch the core of 

the database. FP-Growth unlike Apriori which 

checks the database K times (where K is the 

greatest cardinality of the found frequent patterns), 

FP-growth scans the database only twice. The 

important concept of FP-Growth is to recursively 

obtain applicable paths from the FP-tree to frame 

projected databases (i.e., accumulations of 

transactions containing a few items), from which 

sub-trees (i.e., small FP-trees) catching the content 

of important transactions produced. 

The above illustrated algorithms are very 

famous but still contain lot of demerits like Apriori 

scans the database repeatedly and generate lot of 

two  candidates, FP-Growth algorithm requires lot 

of memory space to store the entire database. To 

overcome these snags the proposed approach is 

developed by employing simple computations to 

reduce excessive candidates and to reduce the 

memory consumption by partitioning the entire 

database and process each partition separately in 

different processors and then merge the result back 

to find the frequent patterns. 
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Big Data 

The main goal of the paper was to apply 

the proposed algorithm to mine big data using 

partitioning technique. Big data [3], [5] are present 

in all areas and verticals. Usually they are high 

veracity, velocity, value, variety and volume past 

the capacity of usually utilized programming to 

oversee, query, and process at low time. These high 

volumes of profitable data can be effectively 

gathered or produced at a high velocity from 

various data sources (which may prompt diverse 

data formats) in different genuine applications, for 

example, bioinformatics, click streams, market 

basket data, social network, and additionally from 

the internet [4]. 

Features Of Big Data 

The following are the main characteristics 

of the big data, and they are illustrated by 5V’s, 

Veracity-emphases on the quality of the input raw 

data (e.g., doubtfulness, disorder, andcredibility of 

the data) 

Velocity–the speed at which data are archived or 

discovered. 

Value- the usefulness of data. 

Variety- various types, contents or formats of data. 

Volume- focuses on the quantity of data. 

Due to the 5Vs" attributes of big data, new 

types of algorithm are required for overseeing, 

querying, and processing these big data in order to 

empower improved basic leadership, 

understanding, and process enhancement. This 

imbues and spurs research and practices in data 

science, which intend to create orderly or 

quantitative data analytic algorithms to examine 

(e.g., assess, clean, change, and model) and mine 

big data. 

2. PROPOSED APPROACH 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Proposed approach 

The proposed approach or the architecture 

is shown in the figure 1. The input raw data is 

initially fed and as the size of the input data is too 

large, the architecture apportioning layer divides 

the data and each of the data is processed in 

parallel. Here the proposed algorithm is applied 

and the local support count is found. The processed 

itemsets are then merged together and here the data 

compression takes place using grouping of the 

similar  with the number of occurrences global 

support value (gS). This will considerably reduce 

the size of the merged data.  

M-data  ={, gS}. Suppose itemset {A, B} 

is found in 1289 transactions, the M-data itemset = 

{(A, B),1289} 

Input data 

Partition1 

Partition2 

Partition n 

Proposed 

Algorithm 

Merged data 

Calculate local support 

for each partition 

Calculate 

global support 

Level 1 Level 2 Level n 
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The merged and compressed data is again 

partitioned to split the data into smaller parts and 

the parallel processing takes place to find the local 

support and then merged to find the global support. 

This process is continued until the merged dataset 

size becomes smaller enough to process without 

parallel computing. 

3.PROPOSED ALGORITHM 

 The proposed algorithm starts with the 

discovery of unique items present in the partitioned 

data. This procedure clearly finds the distinct item 

present with the frequency. Once the unique items 

are found the bit vector representation is carried out 

to denote whether the item is present in the 

transaction or not. If present it is marked by the bit 

value “1” else marked by the bit value “0”. Initially 

in the level 1, the two  candidates are formed using 

the bit vector table and using simple AND 

operation to find the number of occurrences (local 

support value-LSV). The different processor 

processed and discovered 2-itemsrts are merged 

together to find the global support and then the data 

compression is carried out using grouping the 

similar  and representing the data in {,gS} format. 

Here if the global count of the  item sets which are 

less than the user specified minimum support 

threshold value are pruned away and the 

unpromising items are removed from the merged to 

reduce the size of the merged data considerably. 

The same process is continued until the data 

becomes small enough to process in a single 

processor.  

3.1 Divide And Conquer Parallel Processing Algorithm 

ALGORITHM DCPP( Data Ð, MinSup M) 

INPUT: data Ð 

OUTPUT: Frequent Itemset FI 

BEGIN: 

1. Load and Scan the data Ð 

2. For each Row R  Ð do  

3. Find UniqueItems with count 

4. End For 

5. Generate Bit Table( ) 

6. Fetch the item count from different processor and sum the values to 

prune the unpromising items 

7. Group similar transactions to compress the data size 

8. CandidateFormation ( ) // candidate formation 

9. Merge data from different source 

10. Calculate global support for itemset and compress data 

11. If (gS >= MinSup M) 

12. Store the itemset RESULT 

13. End IF 

14. Return RESULT 

END  

Figure 2: Pseudo code of the DCPP algorithm 

The proposed algorithm is explained with a sample dataset for clear understanding and the table 1 

shows the sample dataset. 

                                 Table 1: Sample dataset 

TID ITEMS 

T1 1, 2, 3, 5, 6, 15 

T2 1, 3, 7 

T3 5, 9 

T4 1,3,4,5,7 
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The initial step of finding the unique items is performed and there are 14 different items present in the 

sample dataset comprising of 10 transactions. Scan the dataset and then the bit table is constructed according to 

the items presence as shown in the figure 3. 

 

 

 

 

 

 

 

Figure 3: Bit table construction for the sample dataset 

 

PROCEDURE generateBIT-Table( Database Ð) 

INPUT: database Ð 

OUTPUT: Bit table  

BEGIN: 

1. Load and Scan the data Ð 

2. For each Row R    Ð do  

3. If (UniqueItem present in R) 

4. Mark “1” in bit table 

5. Else  

6. Mark “0” in bit table 

7. End if 

8. End For  

9. Return bit table 

END  

Figure 4: Pseudo code to generate bit table 

The pseudo code to generate the bit table 

is shown in the figure 4 and the generated table is 

shown in the figure 3. The count from the various 

processors is fetched and then the single items with 

less minimum support values are removed. The 

next process is to form the candidates along with 

the local support count. Let us assume that the user 

defined support threshold value is given to be 2. 

Here the 1-itemset count is fetched from different 

processor to make sure that the promising items 

should not be pruned away locally. Here assume 

that the items {9,10,12,13,14,15,16} fetched from 

the other processors have lower support count and 

hence pruned away locally. 

T5 1,3,5,7,12 

T6 5, 10 

T7 1,2,3,5,6, 16 

T8 1,3,4 

T9 1,3,5,7,13 

T10 1,3,5,7,14 
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                                                           Figure 5: Frequent 1-itemset 

 The data compression in the form of 

grouping the similar items are carried out and the 

transactions with 10 rows are reduced to 6 rows 

after the compression and hence the size of the 

dataset is reduced to almost 40%. The number of 

times the transaction (TC) occurs is noted to form 

the candidates in the next step. 

 

 

 

 

 

 

 

                                 Figure 6: Compressed dataset 

Actually the sample dataset shown in the 

table 1 is partitioned into two parts (i.e.) 

transactions [1-5] and transactions [6-10] are 

bifurcated to facilitate the speed of the execution 

and to reduce the memory consumption. But for 

brevity, the entire transaction is taken as a partition 

and processed as example. 

PROCEDURE candidateFormation( Bit table, Unique items) 

INPUT: Bit table, Unique Items 

OUTPUT: Candidates with local support count  

BEGIN: 

1. For i1to  UniqueItemCount do  

2. For j [i+1] to  UniqueItemCount do 

3. CUniqueItem[i]  UniqueItem[j] 

4. Fetch the bit table to calculate support using AND operation 

5. Store Res {C, support count} 

6. Store pruned candidates in P-Res to find whether the candidate is 

really worthy when merged with other partitions. 

7. End For  

8. End For 

9. Return Res, P-Res 

END PROCEDURE 

Figure 7: Pseudo code to generate local candidates 

ITEMS 

TC 1 2 3 4 5 6 7 

1 0 1 0 1 0 1 3 

1 1 1 0 1 1 0 2 

0 0 0 0 1 0 0 2 

1 0 1 0 0 0 1 1 

1 0 1 1 1 0 1 1 

1 0 1 1 0 0 0 1 
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 Here the items “1” and “2” is initially 

formed by the union operation and the support 

count is computed from the bit table. The item “1” 

and item “2” columns are fetched to perform the 

AND operation to find the exact frequency of the 

{1, 2} s shown below, 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: calculation of the count and candidate formation 

Here the compressed dataset is considered 

and the presence of the 1’s in the both items is 

checked by using simple AND operation and the 

TC value corresponding to the items with 1’s are 

summed to get the local support count. Since the 

occurrence of {1, 2} is TRUE only in one occasion 

as shown in the figure 8 (row 2) the corresponding 

TC=2 is taken and the support count of {1,2}= 2. 

Similarly all the candidates are formed and the 

candidate along with the local support count {(1, 

2), 2}is archived in the result to be merged for 

global support computations.  

PROMISING ITEMS – (Res) UNPROMISING ITEMS – (P-Res) 

2 ITEMSET Count 2 ITEMSET COUNT 

1,2 2 2,4 0 

1,3 8 2,7 0 

1,4 2 4,6 0 

1,5 6 4,5 1 

1,6 2 4,7 1 

2,3 2   

2,5 2   

2,6 2   

3,4 2   

3.5 6   

3,6 2   

3,7 5   

5,6 2   

5,7 4   

                  Figure 9: First level local candidates formed from one processor 

1 AND 2 {1,2} TC 

1  
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1 1 1 2 

0 0 0  

 

1 0 0 

1 0 0 

1 0 0 

Support of {1,2}= TC  2 
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Now the partitioned candidates generated 

from various processors are merged into a single 

dataset to calculate the global support and if the 

global support is found to be higher than or equal 

to the user defined support threshold value, the 

resultant candidates are stored in result. And the 

unpromising candidates are pruned and then again 

this merged dataset is partitioned and recursively 

executed to form the next (k+1) candidates using 

the DCPP algorithm.  

 

3.2 Property 1 

 A global frequent itemset {(X,Y), gS} may 

not be a local frequent itemset {(X,Y),LSC}. 

 {(X,Y), gS} ≠ {(X,Y),LSC} 

3.3 Property 2 

 An itemset which may appear infrequent 

in one partition may be frequent in another 

partition or may be frequent in the global merged 

dataset. 

3.4 Property 3 

 Given a large dataset which comprises of 

n partitions where the minimum support count is 

M, the global frequent item set Cn may or may not 

appear in the partitions Ci, i=1,2,3,…n 

4. EXPERIMENTAL RESULTS 

 Experiments are carried out to test the 

performance of the proposed algorithm using very 

large synthetic dataset and the coding is done using 

C#.NET. For the experimental purpose 10 nodes 

are utilized and all the systems configuration is 

Intel Core I7 processor with 4GB RAM and 2TB 

HDD. The synthetic dataset are generated by the 

IBM Quest data mining code [7].The parameters of 

the dataset are shown in the table 2.  

Table 2: Parameters used in synthetic dataset generation 

4.1 

Dataset Used  

Table 3: Synthetic dataset used for experiment 

 

 

The execution time for the proposed 

algorithm is computed with a fixed support value 

for each dataset and using various numbers of 

processors to check the running time and the 

increase in speed of the DCPP algorithm. The  

 

minimum support values for the first dataset 

provided = 0.25, for the second dataset = 0.3 and 

for the third large dataset=0.45. The execution time 

and the increase in the speed are shown in the 

figure 9 for all the datasets. 

Parameters Description of parameter 

D Total number of sequences in the dataset 

C Average number of transactions per sequence 

T Average number of items per transaction 

S Average length of maximal sequence. 

I Average length of transactions within the maximal sequences 

DATASET C S T I D SIZE 

C10T5S4I1.25D1M 10 5 4 1.25 1M 317 MB  

C10T5S4I2.5D1M  10 5  4 2.5 1M  319 MB 

C20T5S8I2D1.2M  20  5  8  2  1.2M  647 MB 
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The figure 10 portrays the total execution 

time for the datasets and the increase in the speed 

of execution when the number of processor is 

increased and from the figures the speed of the 

execution is increased 2 times when two nodes or 

processors are employed. When the node size or 

the processor is increased to 6, the speed increased 

to almost 3.8 times. When the maximum number of 

nodes is employed the speed increased 

approximately 6-7 times which is actually a good  

 

 

performance when the parallel and 

partitioned approach is utilized with divide and 

conquers technique. The execution time too 

reduces sharply when the number of processor 

increases and the proposed algorithm can handle 

dataset exceeding 10 – 15 GB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: The performance chart of the DCPP 

algorithm 
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The number of frequent item set found is 

also calculated and displayed in the table 4. The 

large synthetic datasets used in the experiment 

produced huge volume of frequent item sets which 

is practically impossible to be generated by the 

single processor at the speed at which the parallel 

divide and conquer approach discovered. 

Table 4: Frequent item sets discovered 

 

 

 

Table 4: Frequent item sets discovered 

 

DATASET Minimum 

sup 

Number of 

Frequent 

Item sets 

C10T5S4I1.25D1M 0.25 93898 

C10T5S4I2.5D1M  0.3 179561 

C20T5S8I2D1.2M  0.5 166909 

 

5. CONCLUSION AND FUTURE SCOPE 

 The proposed DCPP algorithm performed 

reasonably well and with the increase in the 

number of nodes the performance related to the 

time also increases proportionately. Since the 

proposed algorithm employs level wise partitioning 

technique, the pruning is also carried out 

effectively to reduce the memory consumption and 

the compression technique utilized decreases the 

size of the dataset considerably. This proposed 

algorithm in future can be employed using map 

reduce to improve the overall performance further.  
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