
International Journal of Research in Advent Technology, Vol.6, No.10, October 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

2777

Parallel Frequent Pattern Mining to Alleviate the

Computational Snags in Very Large Datasets Using

Divide and Conquer Approach

M.Uma
1
, Dr.V.Baby Deepa

2

Ph.D. Research Scholar(P.T.), PG and Research Department of Computer Science,

Government Arts College (Autonomous), Karur-639 005.
 1

Assistant Professor, PG and Research Department of Computer Science,

Government Arts College(Autonomous),, Karur-639 005.
 2

Email : umaramprasath@gmail.com
1
, deepamct@gmail.com

2

Abstract- The frequent mining is not a new area to explore and lot of research works are carried out by many

authors but still the FIM is subject to some improvement when dealt with very large datasets. This paper deals

with very large dataset and utilizes divide and conquer approach (i.e.) partition the dataset into many parts and

process the mining task to reduce the burden related to time complexity and memory consumption. The

proposed approach uses bit vector representation and the local support is initially calculated for the partitioned

datasets using parallel computation on several processors and then the k- found is merged together to find the

global support. Now the merged data is again partitioned to find the k+1 local support using parallel processing

and the merged back to find the global support. This divide and merge process is continued until the size of the

merged data becomes smaller for computation. Here the unpromising items are pruned and the final resultant is

portrayed and the time and memory footprints are calculated for the datasets. From the experimental result it is

quite clear that the parallelism inducted in this paper reduces the time and increases the speed considerably

when executed on very large datasets.

Index Terms: Big Data, Frequent Mining, Item sets, Divide and Conquer

1. INTRODUCTION

The foremost objective of the data mining

is to unearth inherent, hidden, and useful

information from the large raw data [1]. Frequent

mining is one of the most regularly used data

mining process which discovers frequently co-

occurring items, incidents, or objects (e.g.,

frequently bought items in shops). One of the most

famous frequent pattern mining algorithms is the

Apriori algorithm [6] proposed by Aggarwal and

Srikant which employs a generate-and-test

approach in discovering frequent patterns level-

wise and bottom-up technique. In other words, the

algorithm first generates candidate patterns of

cardinality k (i.e., candidate k-s) and tests if each of

them is frequent (i.e., tests if its support or

frequency meets or exceeds the user-specified

minimum support threshold). Then the algorithm

generates k+1 item set which satisfies the minimum

support and continues to generate until all the

frequent item sets are found.

The FP-Growth algorithm [2] is another

well-known frequent pattern mining algorithm. It

utilizes an expanded prefix-tree structure called a

Frequent Pattern Tree (FP-tree) to catch the core of

the database. FP-Growth unlike Apriori which

checks the database K times (where K is the

greatest cardinality of the found frequent patterns),

FP-growth scans the database only twice. The

important concept of FP-Growth is to recursively

obtain applicable paths from the FP-tree to frame

projected databases (i.e., accumulations of

transactions containing a few items), from which

sub-trees (i.e., small FP-trees) catching the content

of important transactions produced.

The above illustrated algorithms are very

famous but still contain lot of demerits like Apriori

scans the database repeatedly and generate lot of

two candidates, FP-Growth algorithm requires lot

of memory space to store the entire database. To

overcome these snags the proposed approach is

developed by employing simple computations to

reduce excessive candidates and to reduce the

memory consumption by partitioning the entire

database and process each partition separately in

different processors and then merge the result back

to find the frequent patterns.

mailto:umaramprasath@gmail.com1
mailto:deepamct@gmail.com2

International Journal of Research in Advent Technology, Vol.6, No.10, October 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

2778

Big Data

The main goal of the paper was to apply

the proposed algorithm to mine big data using

partitioning technique. Big data [3], [5] are present

in all areas and verticals. Usually they are high

veracity, velocity, value, variety and volume past

the capacity of usually utilized programming to

oversee, query, and process at low time. These high

volumes of profitable data can be effectively

gathered or produced at a high velocity from

various data sources (which may prompt diverse

data formats) in different genuine applications, for

example, bioinformatics, click streams, market

basket data, social network, and additionally from

the internet [4].

Features Of Big Data

The following are the main characteristics

of the big data, and they are illustrated by 5V’s,

Veracity-emphases on the quality of the input raw

data (e.g., doubtfulness, disorder, andcredibility of

the data)

Velocity–the speed at which data are archived or

discovered.

Value- the usefulness of data.

Variety- various types, contents or formats of data.

Volume- focuses on the quantity of data.

Due to the 5Vs" attributes of big data, new

types of algorithm are required for overseeing,

querying, and processing these big data in order to

empower improved basic leadership,

understanding, and process enhancement. This

imbues and spurs research and practices in data

science, which intend to create orderly or

quantitative data analytic algorithms to examine

(e.g., assess, clean, change, and model) and mine

big data.

2. PROPOSED APPROACH

Figure 1: Proposed approach

The proposed approach or the architecture

is shown in the figure 1. The input raw data is

initially fed and as the size of the input data is too

large, the architecture apportioning layer divides

the data and each of the data is processed in

parallel. Here the proposed algorithm is applied

and the local support count is found. The processed

itemsets are then merged together and here the data

compression takes place using grouping of the

similar with the number of occurrences global

support value (gS). This will considerably reduce

the size of the merged data.

M-data ={, gS}. Suppose itemset {A, B}

is found in 1289 transactions, the M-data itemset =

{(A, B),1289}

Input data

Partition1

Partition2

Partition n

Proposed

Algorithm

Merged data

Calculate local support

for each partition

Calculate

global support

Level 1 Level 2 Level n

International Journal of Research in Advent Technology, Vol.6, No.10, October 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

2779

The merged and compressed data is again

partitioned to split the data into smaller parts and

the parallel processing takes place to find the local

support and then merged to find the global support.

This process is continued until the merged dataset

size becomes smaller enough to process without

parallel computing.

3.PROPOSED ALGORITHM

 The proposed algorithm starts with the

discovery of unique items present in the partitioned

data. This procedure clearly finds the distinct item

present with the frequency. Once the unique items

are found the bit vector representation is carried out

to denote whether the item is present in the

transaction or not. If present it is marked by the bit

value “1” else marked by the bit value “0”. Initially

in the level 1, the two candidates are formed using

the bit vector table and using simple AND

operation to find the number of occurrences (local

support value-LSV). The different processor

processed and discovered 2-itemsrts are merged

together to find the global support and then the data

compression is carried out using grouping the

similar and representing the data in {,gS} format.

Here if the global count of the item sets which are

less than the user specified minimum support

threshold value are pruned away and the

unpromising items are removed from the merged to

reduce the size of the merged data considerably.

The same process is continued until the data

becomes small enough to process in a single

processor.

3.1 Divide And Conquer Parallel Processing Algorithm

ALGORITHM DCPP(Data Ð, MinSup M)

INPUT: data Ð

OUTPUT: Frequent Itemset FI

BEGIN:

1. Load and Scan the data Ð

2. For each Row R Ð do

3. Find UniqueItems with count

4. End For

5. Generate Bit Table()

6. Fetch the item count from different processor and sum the values to

prune the unpromising items

7. Group similar transactions to compress the data size

8. CandidateFormation () // candidate formation

9. Merge data from different source

10. Calculate global support for itemset and compress data

11. If (gS >= MinSup M)

12. Store the itemset RESULT

13. End IF

14. Return RESULT

END

Figure 2: Pseudo code of the DCPP algorithm

The proposed algorithm is explained with a sample dataset for clear understanding and the table 1

shows the sample dataset.

 Table 1: Sample dataset

TID ITEMS

T1 1, 2, 3, 5, 6, 15

T2 1, 3, 7

T3 5, 9

T4 1,3,4,5,7

International Journal of Research in Advent Technology, Vol.6, No.10, October 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

2780

The initial step of finding the unique items is performed and there are 14 different items present in the

sample dataset comprising of 10 transactions. Scan the dataset and then the bit table is constructed according to

the items presence as shown in the figure 3.

Figure 3: Bit table construction for the sample dataset

PROCEDURE generateBIT-Table(Database Ð)

INPUT: database Ð

OUTPUT: Bit table

BEGIN:

1. Load and Scan the data Ð

2. For each Row R  Ð do

3. If (UniqueItem present in R)

4. Mark “1” in bit table

5. Else

6. Mark “0” in bit table

7. End if

8. End For

9. Return bit table

END

Figure 4: Pseudo code to generate bit table

The pseudo code to generate the bit table

is shown in the figure 4 and the generated table is

shown in the figure 3. The count from the various

processors is fetched and then the single items with

less minimum support values are removed. The

next process is to form the candidates along with

the local support count. Let us assume that the user

defined support threshold value is given to be 2.

Here the 1-itemset count is fetched from different

processor to make sure that the promising items

should not be pruned away locally. Here assume

that the items {9,10,12,13,14,15,16} fetched from

the other processors have lower support count and

hence pruned away locally.

T5 1,3,5,7,12

T6 5, 10

T7 1,2,3,5,6, 16

T8 1,3,4

T9 1,3,5,7,13

T10 1,3,5,7,14

International Journal of Research in Advent Technology, Vol.6, No.10, October 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

2781

 Figure 5: Frequent 1-itemset

 The data compression in the form of

grouping the similar items are carried out and the

transactions with 10 rows are reduced to 6 rows

after the compression and hence the size of the

dataset is reduced to almost 40%. The number of

times the transaction (TC) occurs is noted to form

the candidates in the next step.

 Figure 6: Compressed dataset

Actually the sample dataset shown in the

table 1 is partitioned into two parts (i.e.)

transactions [1-5] and transactions [6-10] are

bifurcated to facilitate the speed of the execution

and to reduce the memory consumption. But for

brevity, the entire transaction is taken as a partition

and processed as example.

PROCEDURE candidateFormation(Bit table, Unique items)

INPUT: Bit table, Unique Items

OUTPUT: Candidates with local support count

BEGIN:

1. For i1to UniqueItemCount do

2. For j [i+1] to UniqueItemCount do

3. CUniqueItem[i]  UniqueItem[j]

4. Fetch the bit table to calculate support using AND operation

5. Store Res {C, support count}

6. Store pruned candidates in P-Res to find whether the candidate is

really worthy when merged with other partitions.

7. End For

8. End For

9. Return Res, P-Res

END PROCEDURE

Figure 7: Pseudo code to generate local candidates

ITEMS

TC 1 2 3 4 5 6 7

1 0 1 0 1 0 1 3

1 1 1 0 1 1 0 2

0 0 0 0 1 0 0 2

1 0 1 0 0 0 1 1

1 0 1 1 1 0 1 1

1 0 1 1 0 0 0 1

International Journal of Research in Advent Technology, Vol.6, No.10, October 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

2782

 Here the items “1” and “2” is initially

formed by the union operation and the support

count is computed from the bit table. The item “1”

and item “2” columns are fetched to perform the

AND operation to find the exact frequency of the

{1, 2} s shown below,

Figure 8: calculation of the count and candidate formation

Here the compressed dataset is considered

and the presence of the 1’s in the both items is

checked by using simple AND operation and the

TC value corresponding to the items with 1’s are

summed to get the local support count. Since the

occurrence of {1, 2} is TRUE only in one occasion

as shown in the figure 8 (row 2) the corresponding

TC=2 is taken and the support count of {1,2}= 2.

Similarly all the candidates are formed and the

candidate along with the local support count {(1,

2), 2}is archived in the result to be merged for

global support computations.

PROMISING ITEMS – (Res) UNPROMISING ITEMS – (P-Res)

2 ITEMSET Count 2 ITEMSET COUNT

1,2 2 2,4 0

1,3 8 2,7 0

1,4 2 4,6 0

1,5 6 4,5 1

1,6 2 4,7 1

2,3 2

2,5 2

2,6 2

3,4 2

3.5 6

3,6 2

3,7 5

5,6 2

5,7 4

 Figure 9: First level local candidates formed from one processor

1 AND 2 {1,2} TC

1

&

0 0

1 1 1 2

0 0 0

1 0 0

1 0 0

1 0 0

Support of {1,2}= TC 2

International Journal of Research in Advent Technology, Vol.6, No.10, October 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

2783

Now the partitioned candidates generated

from various processors are merged into a single

dataset to calculate the global support and if the

global support is found to be higher than or equal

to the user defined support threshold value, the

resultant candidates are stored in result. And the

unpromising candidates are pruned and then again

this merged dataset is partitioned and recursively

executed to form the next (k+1) candidates using

the DCPP algorithm.

3.2 Property 1

 A global frequent itemset {(X,Y), gS} may

not be a local frequent itemset {(X,Y),LSC}.

 {(X,Y), gS} ≠ {(X,Y),LSC}

3.3 Property 2

 An itemset which may appear infrequent

in one partition may be frequent in another

partition or may be frequent in the global merged

dataset.

3.4 Property 3

 Given a large dataset which comprises of

n partitions where the minimum support count is

M, the global frequent item set Cn may or may not

appear in the partitions Ci, i=1,2,3,…n

4. EXPERIMENTAL RESULTS

 Experiments are carried out to test the

performance of the proposed algorithm using very

large synthetic dataset and the coding is done using

C#.NET. For the experimental purpose 10 nodes

are utilized and all the systems configuration is

Intel Core I7 processor with 4GB RAM and 2TB

HDD. The synthetic dataset are generated by the

IBM Quest data mining code [7].The parameters of

the dataset are shown in the table 2.

Table 2: Parameters used in synthetic dataset generation

4.1

Dataset Used

Table 3: Synthetic dataset used for experiment

The execution time for the proposed

algorithm is computed with a fixed support value

for each dataset and using various numbers of

processors to check the running time and the

increase in speed of the DCPP algorithm. The

minimum support values for the first dataset

provided = 0.25, for the second dataset = 0.3 and

for the third large dataset=0.45. The execution time

and the increase in the speed are shown in the

figure 9 for all the datasets.

Parameters Description of parameter

D Total number of sequences in the dataset

C Average number of transactions per sequence

T Average number of items per transaction

S Average length of maximal sequence.

I Average length of transactions within the maximal sequences

DATASET C S T I D SIZE

C10T5S4I1.25D1M 10 5 4 1.25 1M 317 MB

C10T5S4I2.5D1M 10 5 4 2.5 1M 319 MB

C20T5S8I2D1.2M 20 5 8 2 1.2M 647 MB

International Journal of Research in Advent Technology, Vol.6, No.10, October 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

2784

The figure 10 portrays the total execution

time for the datasets and the increase in the speed

of execution when the number of processor is

increased and from the figures the speed of the

execution is increased 2 times when two nodes or

processors are employed. When the node size or

the processor is increased to 6, the speed increased

to almost 3.8 times. When the maximum number of

nodes is employed the speed increased

approximately 6-7 times which is actually a good

performance when the parallel and

partitioned approach is utilized with divide and

conquers technique. The execution time too

reduces sharply when the number of processor

increases and the proposed algorithm can handle

dataset exceeding 10 – 15 GB.

Figure 10: The performance chart of the DCPP

algorithm

International Journal of Research in Advent Technology, Vol.6, No.10, October 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

2785

The number of frequent item set found is

also calculated and displayed in the table 4. The

large synthetic datasets used in the experiment

produced huge volume of frequent item sets which

is practically impossible to be generated by the

single processor at the speed at which the parallel

divide and conquer approach discovered.

Table 4: Frequent item sets discovered

Table 4: Frequent item sets discovered

DATASET Minimum

sup

Number of

Frequent

Item sets

C10T5S4I1.25D1M 0.25 93898

C10T5S4I2.5D1M 0.3 179561

C20T5S8I2D1.2M 0.5 166909

5. CONCLUSION AND FUTURE SCOPE

 The proposed DCPP algorithm performed

reasonably well and with the increase in the

number of nodes the performance related to the

time also increases proportionately. Since the

proposed algorithm employs level wise partitioning

technique, the pruning is also carried out

effectively to reduce the memory consumption and

the compression technique utilized decreases the

size of the dataset considerably. This proposed

algorithm in future can be employed using map

reduce to improve the overall performance further.

REFERENCES

[1] Rakesh Agrawal, Tomasz Imieli nski, and Arun

Swami. Mining association rules between sets

of items in large databases. In Proceedings of

the 1993 ACM SIGMOD International

Conference on Management of Data

(SIGMOD 1993), Washington, DC, USA,

pages 207{216. ACM, 1993.

[2] Jiawei Han, Jian Pei, and Yiwen Yin. Mining

frequent patterns without candidate generation.

SIGMOD Records, 29(2):1{12, May 2000.

[3] Alfredo Cuzzocrea, Domenico Sacc a, and

Je rey D. Ullman. Big data: A research agenda.

In Proceedings of the 17th International

Database Engineering & Applications

Symposium (IDEAS 2013), Barcelona, Spain,

pages 198{203. ACM, 2013.

[4] Alfredo Cuzzocrea, Ladjel Bellatreche, and Il-

Yeol Song. Data warehousing and olap over

big data: Current challenges and future

research directions. In Proceedings of the 16th

International Workshop on Data Warehousing

and OLAP (DOLAP 2013), San Francisco,

California, USA, pages 67-70. ACM, 2013.

[5] Arun Kejariwal. Big data challenges: A

program optimization perspective. In

Proceedings of the 2nd International

Conference on Cloud and Green Computing

(CGC 2012), Xiangtan, China, pages 702{707.

IEEE Computer Society, 2012.

[6] Rakesh Agrawal and Ramakrishnan Srikant.

Fast algorithms for mining association rules in

large databases. In Proceedings of the 20th

International Conference on Very Large Data

Bases (VLDB 1994), Santiago de Chile, Chile,

pages 487{499. Morgan Kaufmann Publishers

Inc., 1994.

[7]QuestData Mining Project, available at http:

www.almaden.ibm.com/

cs/quest/syndata.html., IBM Almaden

Research Center, San Jose, CA 95120.

[8] M. J. Zaki, S. Parthasarathy, M. Ogihara, and

W. Li, Parallel algorithms for fast discovery of

association rules, Data Mining Knowledge

Discovery 1, 4 (December 1997), 343 373.

 [9]M.-Y. Lin, P.-Y. Lee, and S.-C. Hsueh. Apriori-

based frequent itemset mining algorithms on

MapReduce. In Proc. ICUIMC, pages 26–30.

ACM, 2012.

